Tumor viruses and oncogenes

References

- (1) "The Biology of cancer" (2006) by Weinberg R., Chapter 3 & 4.
- (2) "Principle of Virology" (2000) by Skalka A. et al., Chapter 16
- (3) "Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease" (2000), Carcinogenesis, Vol.21, page 405-426.

Tumor viruses (oncogenic viruses)

- 1. Tumor viruses: viruses that directly cause cancer in either experimental animals or humans
 - RNA viruses
 - DNA viruses
- 2. Viruses as etiological factors of human cancer (~15% of all human tumors worldwide are caused by viruses)
- 3. Tumor viruses contributes to:
 - (1) the formation of current concepts of cancer biology
 - molecular mechanisms of cancer formation
 - (2) the recognition of the etiology of some human cancers
- 4. Viruses are usually not complete carcinogens in human cancers; tumor viruses establish long-term persistent infections in human, with cancer an accidental side of viral replication strategy
- 5. The best-characterized mechanisms of transformation by tumor viruses fall into two major classes
 - (1) permanent activation of mitotic signal transduction cascades
 - (2) disruption of the circuits that regulate cell cycle progression

Tumor viruses and human tumors

Table 4.6 Viruses implicated in human cancer causation

Virus ^a	Virus family	Cells infected	Human malignancy	Transmission route
EBV	Herpesviridae	B cells oropharyngeal epithelial cells	Burkitt's lymphoma nasopharyngeal carcinoma	saliva saliva
HTLV-I	Retroviridae	lymphoid T cells	lymphoma ^b non-Hodgkin's lymphoma	Hodgkin's disease parenteral, venereal ^c
HHV-8 ^d	Herpesviridae	endothelial cells	Kaposi's sarcoma, body cavity lymphoma	venereal
HBV HCV	Hepadnaviridae Flaviviridae	hepatocytes hepatocytes	hepatocellular carcinoma hepatocellular carcinoma	parenteral, venereal parenteral
HPV	Papovaviridae	cervical epithelial	cervical carcinoma	venereal
JCV ^e	Papovaviridae	central nervous system	astrocytoma, glioblastoma	?

^aMost of the viruses carry one or more potent growth-promoting genes/oncogenes in their genomes. However, such genes have not been identified in the genomes of HBV and HCV.

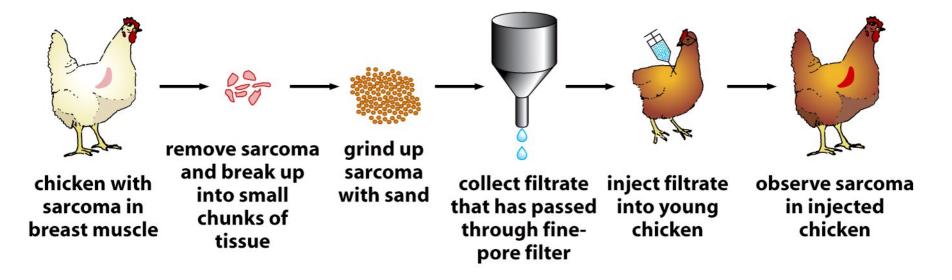
^bThese tumors, which bear copies of EBV genomes, appear in immunosuppressed patients.

^cParenteral, blood-borne; venereal, via sexual intercourse.

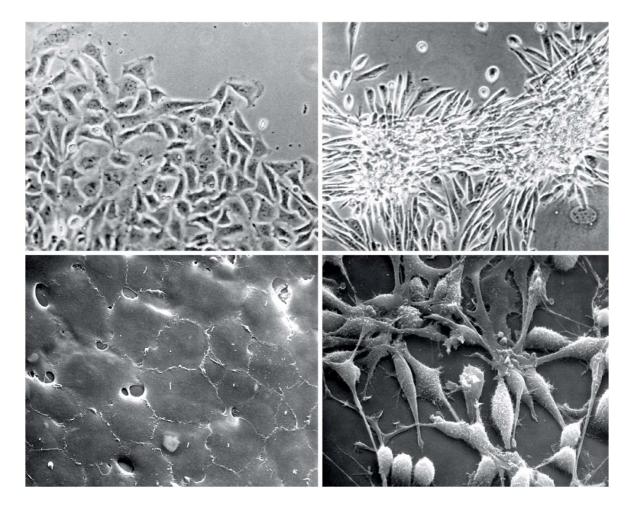
^dAlso known as KSHV, Kaposi's sarcoma herpesvirus.

^eJCV (JC virus, a close relative of SV40) infects more than 75% of the population by age 15, but the listed virus-containing tumors are not common. Much correlative evidence supports the role of JCV in the transformation of human central nervous system cells but evidence of a causal role in tumor formation is lacking.

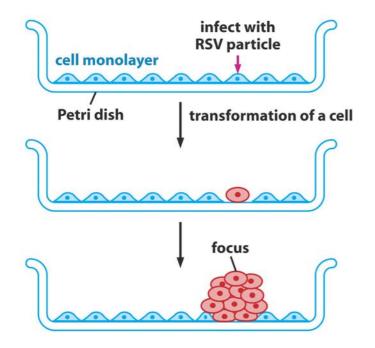
Adapted in part from J. Butel, Carcinogenesis 21:405-426, 2000.

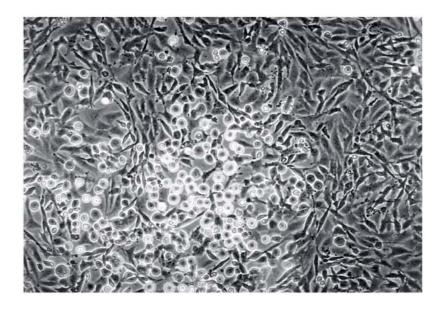

A small but significant proportion of human cancers are caused by mechanisms that involve viruses, bacteria or parasites (15%). The main contributors are DNA tumor viruses. Evidence for their involvement comes partly from the detection of viruses In cancer patients and partly from epidemiology

Transforming retroviruses (oncogenic retroviruses)


- 1. Identification of first retroviral oncogene from avian Rous sarcoma virus (RSV)
- Oncogenes in avian or murine retroviruses are not viral genes: they derived from transduction of normal cellular genes (retroviral transduction)
- 3. Although there are no known human tumor viruses comparable with the acute-transforming viruses that transduce cellular genes, but many oncogenes identified in acute-transforming retroviruses are later found to be involved in human cancers
- 4. Transforming retroviruses carry oncogenes derived from cellular genes that are involved in mitogenic signaling & growth control
- 5. Retroviruses that associated with human cancers: Human T-cell leukemia virus (HTLV-1), HIV-1

Peyton Rous discovered a chicken sarcoma virus called Rous sarcoma virus (RSV)

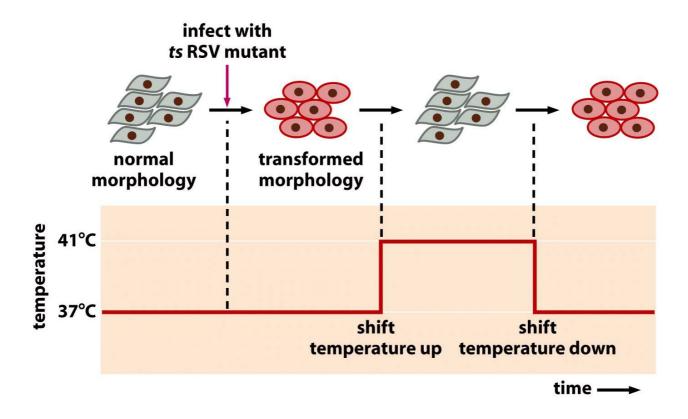

Rous sarcoma virus is discovered to transform infected cells in culture



- Transformation: conversion of a normal cell into a tumor cells
- RSV-infected cells exhibit morphological changes

Rous sarcoma virus is discovered to transform infected cells in culture

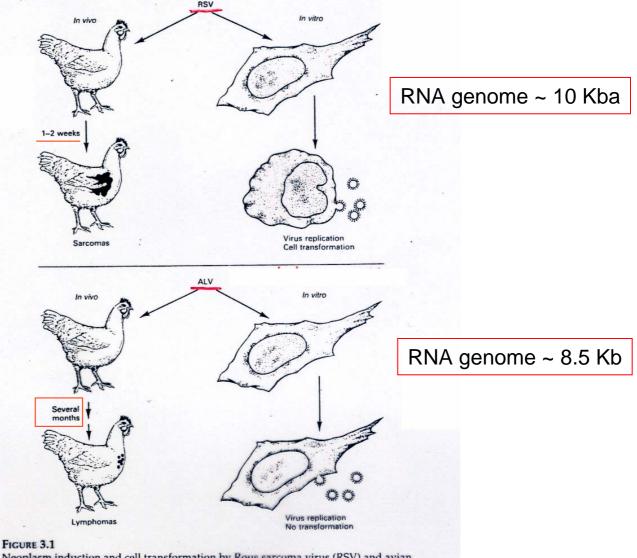
Transformed cells forming foci (clusters) due to loss of cell-contact inhibition



Process of cellular transformation can be accomplished within the confines of a Petri dish

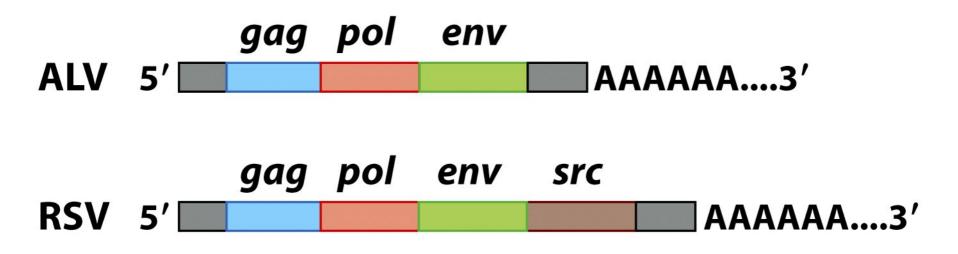
- cancer formation could be studied at the level of individual cells
- cancer is a disease of malfunctioning cells rather than abnormally developing tissues

The continued presence of a transforming gene is needed to maintain transformation

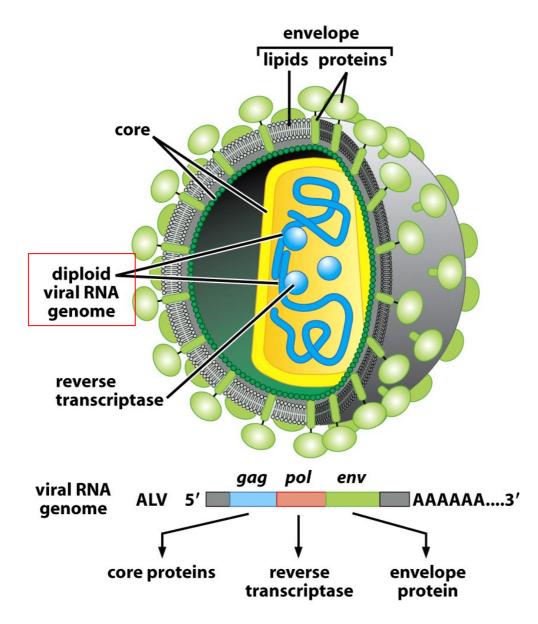

The viral transforming gene was required to both initiate and maintain the transformed phenotype of virus-infected cells

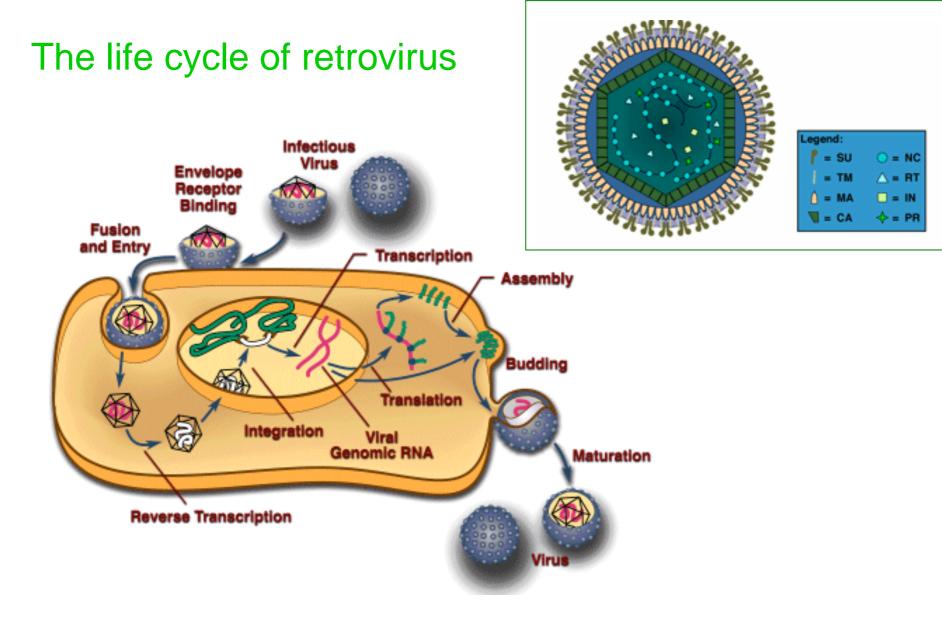
Discovery of oncogenic viruses from Rous sarcoma viruses (RSV)

RSV: Rous sarcoma virus (by Peyton Rous, 1911) acute transforming virus


ALV: avian leukemia virus

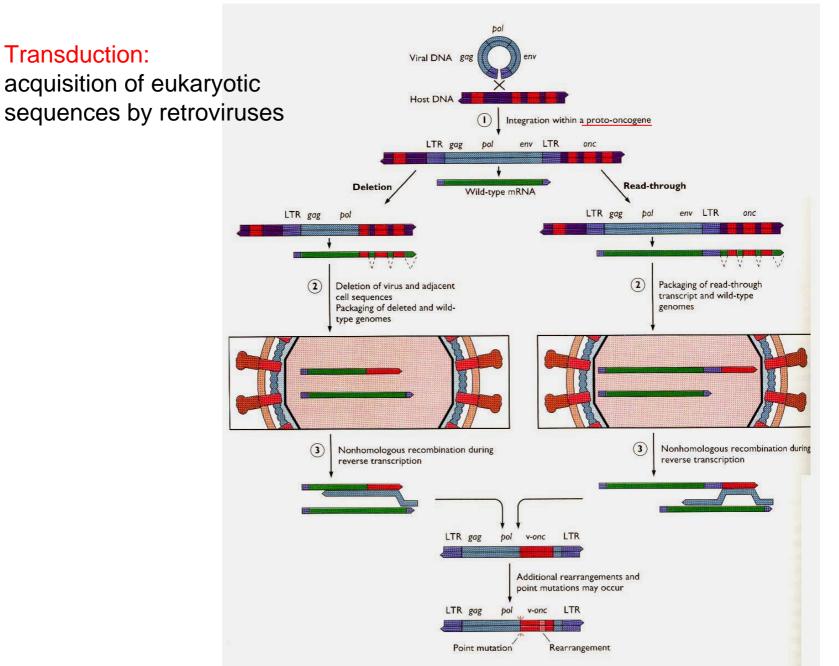
weakly transforming virus

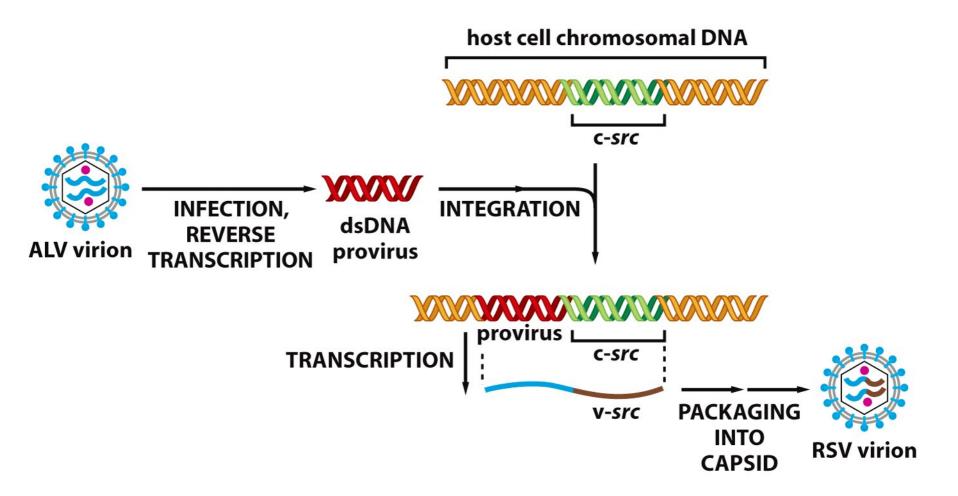



Neoplasm induction and cell transformation by Rous sarcoma virus (RSV) and avian leukosis virus (ALV). RSV induces sarcomas rapidly in infected chickens and efficiently transforms fibroblasts in culture. In contrast, ALV induces lymphomas only after long latent periods in infected birds and does not transform cells in culture.

How RSV acquire additional src gene?

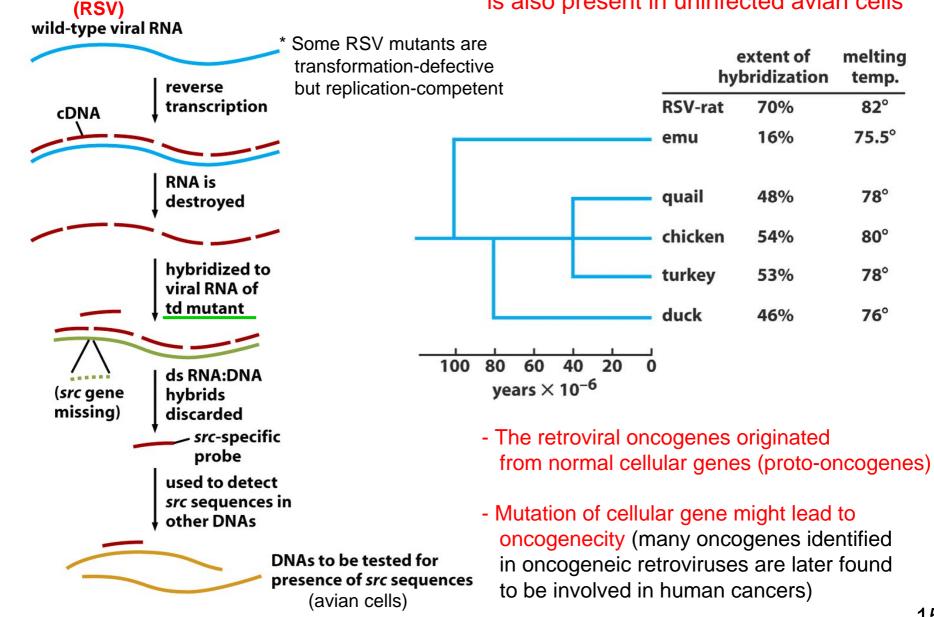
The structure of a retrovirus




Retroviral genomes become integrated into the chromosomes of infected cells

RNA → DNA → Integrated DNA (provirus) → RNA

Activation of proto-oncogene by retroviral transduction


Capture of *src* by ALV leads to formation of RSV

RSV exploits a kidnapped cellular gene to transform cells

The discovery of proto-oncogenes

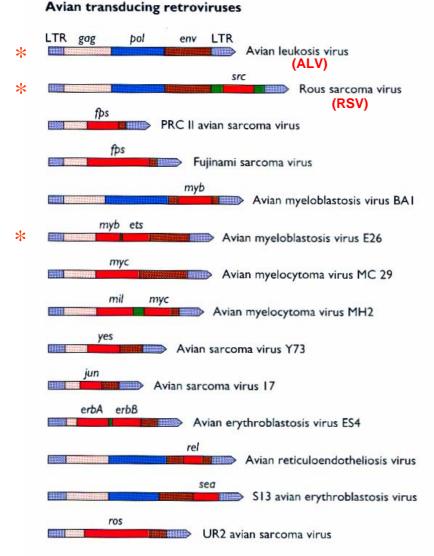
A version of the *src* gene carried by RSV is also present in uninfected avian cells

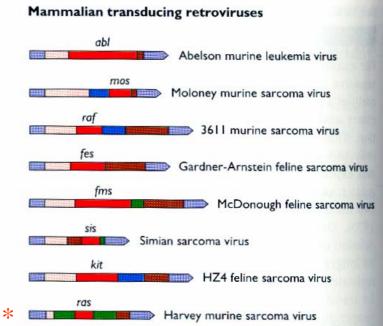
melting

temp.

82°

75.5°


78°


80°

78°

76°

Most oncogenic transforming viruses are replication-defective

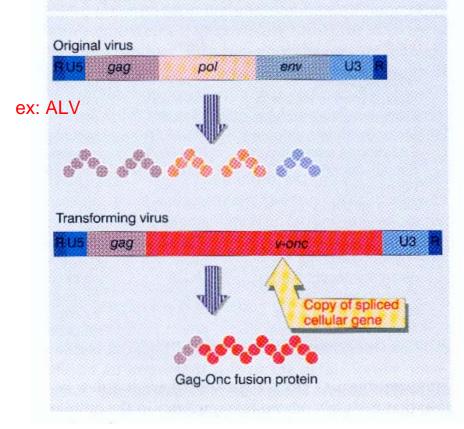
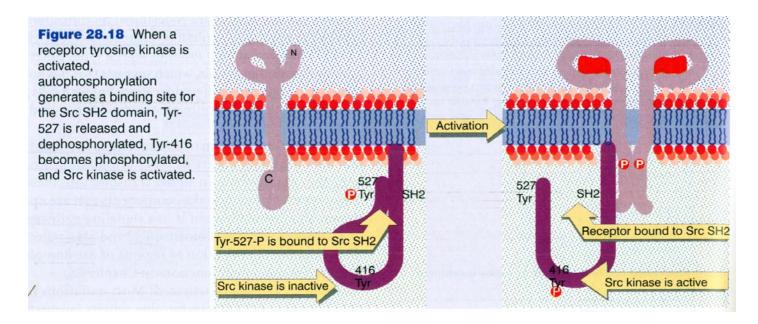
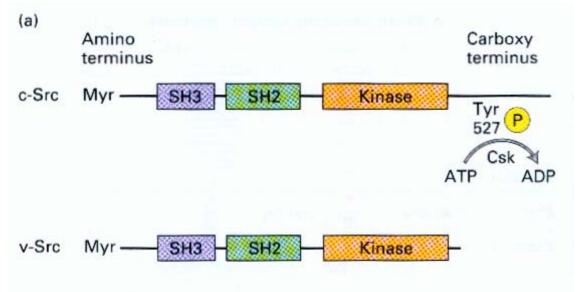


Figure 16.7 Genome maps of avian and mammalian transducing retroviruses. Avian lcukosis virus (e.g., Rous-associated virus) is a prototypical retrovirus. Its genome contains the three major coding regions *gag* (pink), *pol* (blue), and *env* (brown) and regulatory sequences that constitute the long terminal repeat (LTR) (lavender) of the provirus. In Rous sarcoma virus, the oncogene *src* is added to the complete viral genome. In all other avian and mammalian transducing retroviruses, some of the viral coding information is replaced by cell-derived oncogene sequences (red). Consequently, such transducing viruses are defective in replication. In some cases, additional cellular DNA sequences (green) were also captured in the viral genome. Adapted from T. Benjamin and P. Vogt, p. 317–367, *in* B. N. Fields et al. (ed.), *Fields Virology*, 2nd ed., (Raven Press, New York, N.Y., 1990), with permission.

- Oncogenes in avian or murine retroviruses are not viral genes; they derived from transduction of normal cellular genes (proto-oncogenes)

Figure 28.7 A transforming retrovirus carries a copy of a cellular sequence in place of some of its own gene(s).


Replication-competent viruses (nontransducing viruses; helper viruses)


Replication-defective viruses (transducing viruses; transforming viruses)

Features of oncogenes activated by retroviral transduction

- (a) Over-expression
- (b) Deletion (truncation)
- (c) Point mutations

v-Src is a dominant active form of c-Src

proto-oncogene

A normal gene have the intrinsic potential to become oncogene

viral oncogene

An abnormal gene with ability to induce transformation and tumorigenicity

Table 3.3 Acutely transforming retroviruses and the oncogenes that they have acquired^a

	Viral	Species	Major disease	Nature of oncoprotein
	oncogene			
	src	chicken	sarcoma	non-receptor TK
	yes	chicken	sarcoma	non-receptor TK
Fujinami sarcoma	fps ^b	chicken	sarcoma	non-receptor TK
UR2	ros	chicken	sarcoma	RTK; unknown ligand
Myelocytomatosis 29	тус	chicken	myeloid leukemia ^c	transcription factor
Mill Hill virus 2	mild	chicken	myeloid leukemia	ser/thr kinase
Avian myeloblastosis E26	myb	chicken	myeloid leukemia	transcription factor
Avian myeloblastosis E26	ets	chicken	myeloid leukemia	transcription factor
	erbA	chicken	erythroleukemia	thyroid hormone receptor
Avian erythroblastosis ES4	erbB	chicken	erythroleukemia	EGF RTK
3611 murine sarcoma	rafe	mouse	sarcoma	ser/thr kinase
SKV770	ski	chicken	endothelioma (?)	transcription factor
Reticulo endotheliosis	rel	turkey	immature B-cell lymphoma	transcription factor
Abelson murine leukemia	abl	mouse	pre-B-cell lymphoma	non-receptor TK
Moloney murine sarcoma	mos	mouse	sarcoma, erythroleukemia	ser/thr kinase
Harvey murine sarcoma	H-ras	rat, mouse	sarcoma	small G protein
Kirsten murine sarcoma	K-ras	mouse	sarcoma	small G protein
FBJ murine sarcoma	fos	mouse	osteosarcoma	transcription factor
Snyder–Theilen feline sarcoma	fes ^f	cat	sarcoma	non-receptor TK
McDonough feline sarcoma	fms	cat	sarcoma	CSF-1 RTK
Gardner-Rasheed feline sarcoma	fgr	cat	sarcoma	non-receptor TK
Hardy–Zuckerman feline sarcoma	kit	cat	sarcoma	steel factor RTK
	sis	woolly monkey	sarcoma	PDGF
АКТ8	akt	mouse	lymphoma	ser/thr kinase
Avian virus S13	sea	chicken	erythroblastic leukemia ^g	RTK; unknown ligand
Myeloproliferative leukemia	mpl	mouse	myeloproliferation	TPO receptor
	eyk	chicken	sarcoma	RTK; unknown ligand
-	crk	chicken	sarcoma	SH2/SH3 adaptor
Avian sarcoma virus 17	jun	chicken	sarcoma	transcription factor
	qin	chicken	sarcoma	transcription factorh
	maf	chicken	sarcoma	transcription factor
Cas NS-1 virus	cbl	mouse	lymphoma	SH2-dependent ubiquitylatio

The vertebrate genome carries a large group of proto-oncogenes
 More than thirty distinct vertebrate proto-oncogenes have been discovered through this route

RNA viruses contribute to the formation of current concepts of cancer biology

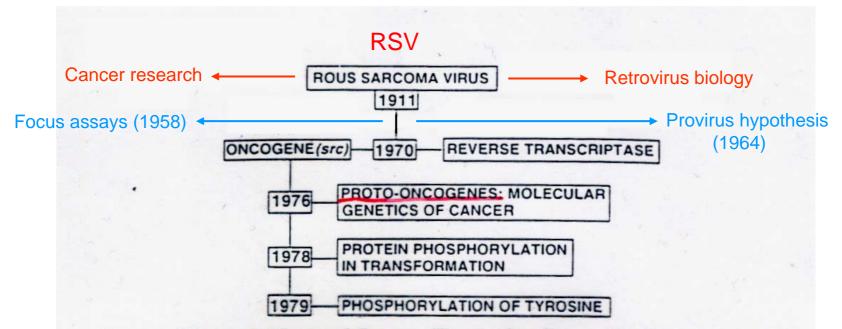
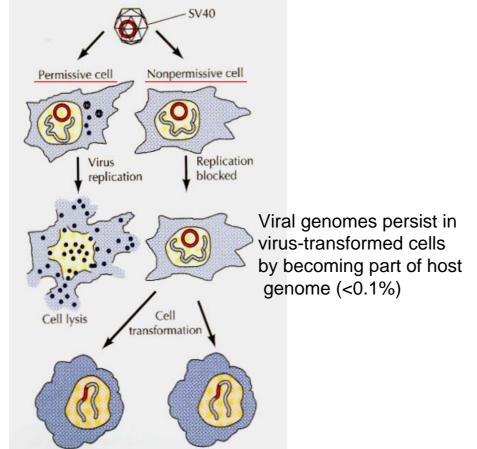


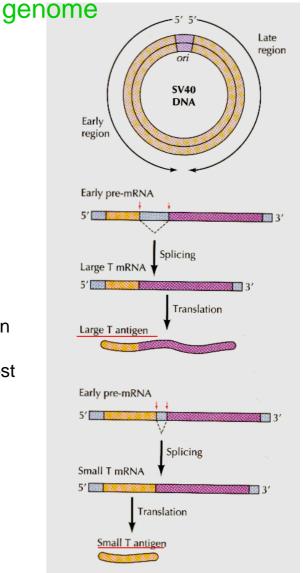
FIGURE 6. The retroviral lineage of discovery. The retrovirus discovered by Peyton Rous in 1911 eventually figured in four additional important advances: the discovery of viral oncogenes, the first genetic determinants implicated in tumorigenesis (7): the discovery of proto-oncogenes, the first sighting of potential cancer genes in cellular genomes (7): the discovery that protein phosphorylation can mediate neoplastic transformation of cells (10): and the discovery of protein-tyrosine kinases, a large and vital family of enzymes with central roles in cellular signaling (10).

Viruses containing DNA molecules are also able to induce cancer


Table 3.1 Tumor virus genomes

		Virus family	Approximate size of genome (kb)
	DNA viruses		
	Hepatitis B virus (HBV)	hepadna	3
*	SV40/polyoma	papova	5
*	Human papilloma 16 (HPV)	papova	8
	Human adenovirus 5	adenovirus	35
	Human herpesvirus 8 (HSV-8; KSHV)	herpesviruses	165
	Shope fibroma virus	poxviruses	160
	RNA viruses		
*	Rous sarcoma virus (RSV)	retrovirus	9
*	Human T-cell leukemia virus (HTLV-I)	retrovirus	9

Permissive vs. nonpermissive cells


Figure 15.13

SV40 replication and transformation Infection of a permissive cell results in virus replication, cell lysis, and release of progeny virus particles. In a nonpermissive cell, virus replication is blocked, allowing some cells to become permanently transformed.

SV40 and polyomavirus serve as models to study DNA tumor virus-induced cellular transformation

Oncogenic proteins in DNA tumors are viral proteins encoded by viral

Large T antigens bind and inactivate Rb and p53

DNA tumor viruses

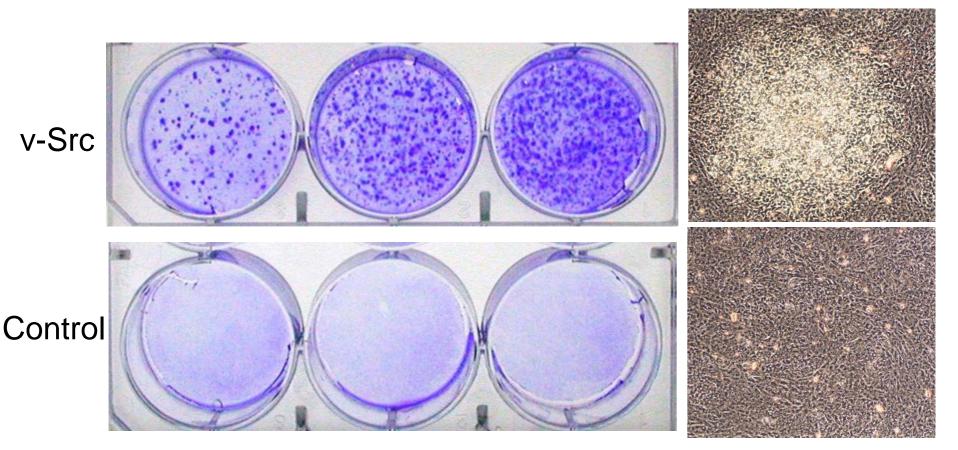
- 1. Encode oncogenes of viral origin that are essential for both viral replication and cellular transformation; study of DNA tumor viruses lead to the discovery of cellular tumor suppressor genes
- 2. Induce transformation by
 - (1) Disruption of the circuits that regulate cell cycle progression
 - *ex: large T antigen from <u>SV40 virus</u> interacts with Rb and p53. *ex: in adenoviruses, E1A interacts with Rb, and E1B interacts with p53
 - (2) Activation of cellular mitogenic signal transductuin pathways by altering activity or expression level
 - *ex: LMP-1 of Epstein-Barr virus acts as constitutively active receptor to alter cellular gene expression
 - *ex: The human papillomavirus E5 protein increase concentration of the cell surface EGF receptor
 - *ex: <u>Polymavirus</u> middle T protein can function as virus-specific adaptor to activate abnormal signal transduction
 - *ex: <u>SV40</u> virus small T antigen inhibit activity of protein phosphatase 2A

Tumor viruses induce multiple changes in cell phenotypes including acquisition of tumorigenicity

Table 3.2 Properties of transformed cells

Altered morphology (rounded shape, refractile in phase-contrast microscope)

- Loss of contact inhibition (ability to grow over one another)
- * Ability to grow without attachment to solid substrate (anchorage independence)
- Ability to proliferate indefinitely (immortalization)

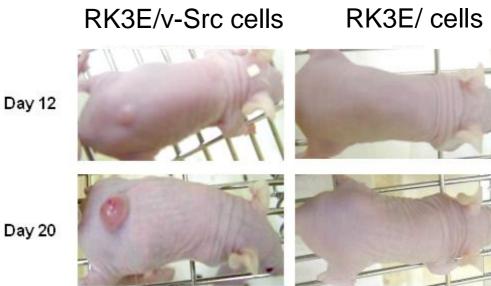

 Reduced requirement for mitogenic growth factors
 High saturation density (ability to accumulate large numbers of cells in culture dish)
 Inability to halt proliferation in response to deprivation of growth factors
 Increased transport of glucose
- * <u>Tumorigenicity</u>

Transformation: conversion of a normal cell into a tumor cells

Tumorigenicity: tumor formation in host animals

Focus assays

- To detect loss of cell-contact inhibition

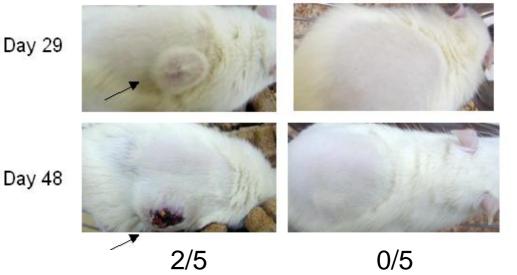

Soft agar assays

- To detect loss of anchorage-independence

Control v-Src

In vivo tumorigenesis assays

Immunocompromised host



4/5, 5/5

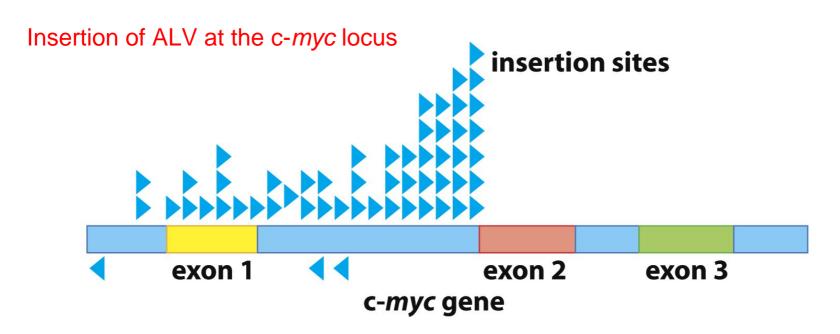
0/5, 0/5

syngeneic host

Activation of proto-oncogenes

RNA virus-related

Retroviral transduction Promoter/enhancer insertion Trans-activation

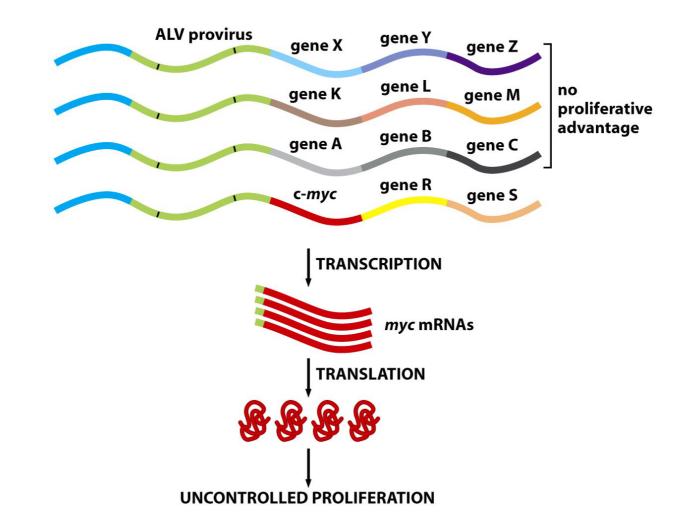

DNA virus-related

Altering activity/expression of host growth-related genes through protein-protein interaction

Non-viral

- Point mutation
- Amplification
- Chromosomal translocation

Promoter/enhancer insertion by retroviruses



- Slowly transforming retroviruses (ex: ALV) activate proto-oncogenes by inserting their genomes adjacent to these cellular genes
- This insertion places the *myc* under the control of the viral transcriptional promoter, which leads to over-expression of *myc* gene

**Insertional mutagenesis:

Insertion of the viral genome adjacent to into cellular genes in cellular chromosomes

Conversion of c-myc gene into an oncogene by insertional mutagenesis

Insertion of ALV at the c-myc locus leads to overexpression of Myc protein

Gene	Insertional mutagen	Tumor type	Species	Type of oncoprotein
тус	ALV	B-cell lymphoma	chicken	transcription factor
тус	ALV, FeLV	T-cell lymphoma	chicken, cat	transcription factor
nov	ALV	nephroblastoma	chicken	growth factor
erbB	ALV	erythroblastosis	chicken	receptor TK
mos	IAP	plasmacytoma	mouse	ser/thr kinase
int-1ª	MMTV	mammary carcinoma	mouse	growth factor
int-2 ^b	MMTV	mammary carcinoma	mouse	growth factor
int-3	MMTV	mammary carcinoma	mouse	receptor ^c
int-H/int-5	MMTV	mammary carcinoma	mouse	enzyme ^d
pim-1	Mo-MLV	T-cell lymphoma	mouse	ser/thr kinase
pim-2	Mo-MLV	B-cell lymphoma	mouse	ser/thr kinase
bmi-1	Mo-MLV	T-cell lymphoma	mouse	transcription repressor
tpl-2	Mo-MLV	T-cell lymphoma	mouse	non-receptor TK
lck	Mo-MLV	T-cell lymphoma	mouse	non-receptor TK
p53	Mo-MLV	T-cell lymphoma	mouse	transcription factor
GM-CSF	IAP	myelomonocytic leukemia	mouse	growth factor
IL2	GaLV	T-cell lymphoma	gibbon ape	cytokine ^e
IL3	IAP	T-cell lymphoma	mouse	cytokine
K-ras	F-MLV	T-cell lymphoma	mouse	small G protein
CycD1	F-MLV	T-cell lymphoma	mouse	G1 cyclin
CycD2	Mo-MLV	T-cell lymphoma	mouse	G1 cyclin

Table 3.4 Examples of cellular genes found to be activated by insertional mutagenesis

^aSubsequently renamed Wnt-1.

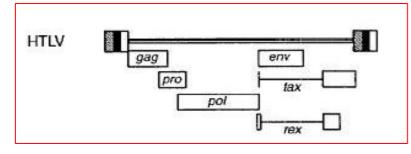
^bSubsequently identified as a gene encoding a fibroblast growth factor (FGF).

^cRelated to notch receptors.

^dEnzyme that converts androgens to estrogens.

^eCytokines are GFs that largely regulate various types of hematopoietic cells.

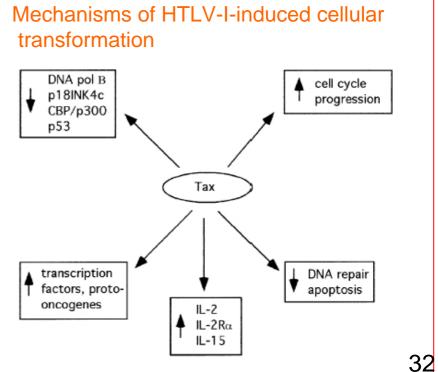
Abbreviations: ALV, avian leukosis virus; FeLV, feline leukemia virus; F-MLV, Friend murine leukemia virus; GaLV, gibbon ape leukemia virus; GF, growth factor; IAP, intracisternal A particle (a retrovirus-like genome that is endogenous to cells); Mo-MLV, Moloney murine leukemia virus; MMTV, mouse mammary tumor virus; ser/thr, serine/threonine; TK, tyrosine kinase.


Adapted in part from J. Butel, Viral carcinogenesis: Revelation of molecular mechanisms and etiology of human disease, *Carcinogenesis* 21:405–426, 2000; and from N. Rosenberg and P. Jolicoeur, Retroviral pathogenesis, in J.M. Coffin, S.H. Hughes and H.E. Varmus (eds.), Retroviruses. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1997. Also in part from G.M. Cooper, Oncogenes, 2nd ed. Boston: Jones and Bartlett Publishers, 1995.

Human retroviruses

HTLV-1 (human T-cell leukemia virus 1)

- The only currently accepted human tumor virus from the retrovirus family
- Associated with adult T cell leukemia/lymphoma (ATL)
- This virus carries oncogene "tax"
- Tax protein: a transcription factor, function in viral replication, also responsible for enhanced transcription of viral and cellular genes that promote cell growth factor and dysfunction of cellular


regulatory tumor suppressor genes

p.s:

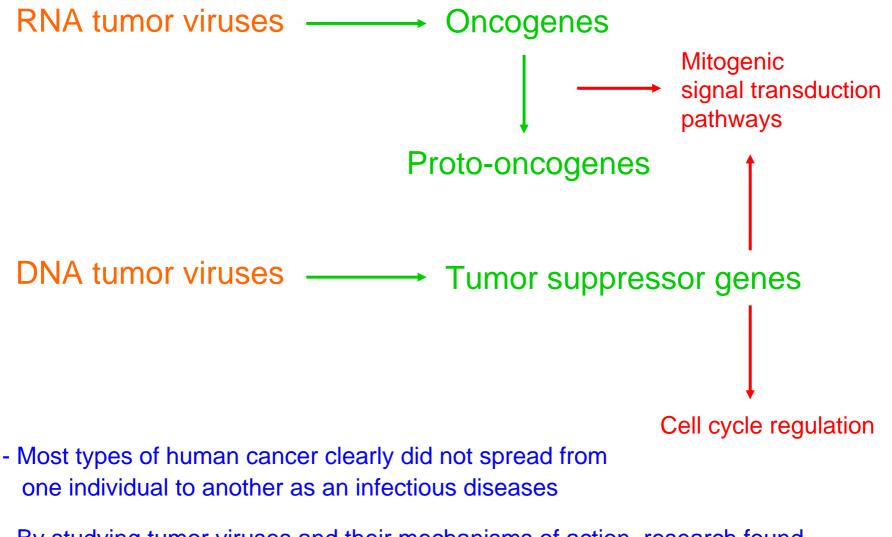
Other host factors and virus-host interactions also contribute to genesis of ALT, ex: virus strain, HLA haplotype, route of infection, and immune response to HTLV-I

Virology (2003), Vol. 308, Page 1-12

Activation of proto-oncogenes

RNA virus-related

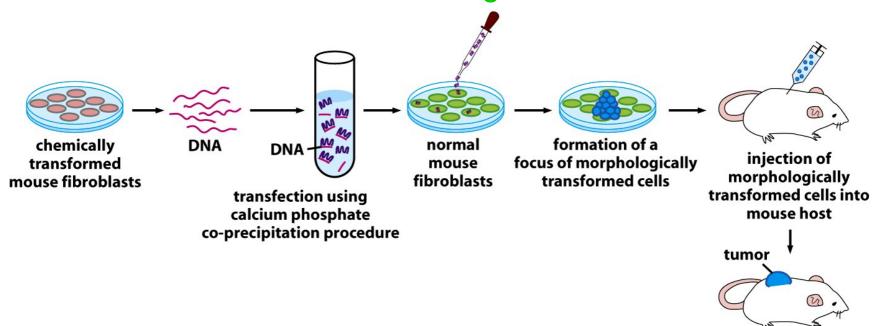
Retroviral transduction ex: RSV Promoter/enhancer insertion ex: ALV Trans-activation ex: HTLV-1


DNA virus-related

Altering activity/expression of host growth-related genes through protein-protein interaction

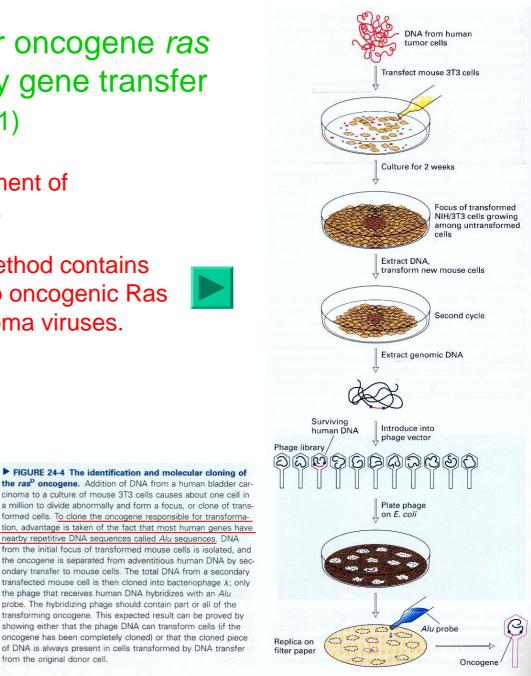
Non-viral

- Point mutation
- Amplification
- Chromosomal translocation



 By studying tumor viruses and their mechanisms of action, research found that cancer is a disease of genes and thus a condition that was susceptible to analysis by the tools of molecular biology and genetics

The inability o find tumor viruses in the majority of human cancers in the mid-1970s left researchers with one main theory of how most human cancers arises: that carcinogens act as mutagens and function by mutating normal growth-controlling genes into oncogenes


Transfection of DNA provides a strategy for detecting non-viral oncogenes

- The donor tumor DNA carried one or several genetic elements that were able to convert non-tumorigenic <u>NIH3T3 recipient cell</u> into a cell that was strongly tumorigenic
- DNA extracted from cell lines derived from human bladder, lung, and colon carcinomas were found capable of transforming recipient NIH3T3 cells.

Molecular cloning of cellular oncogene ras from human cancer cells by gene transfer assays (Robert Weinberg, 1981)

- Direct evidence to show the involvement of cellular oncogene in human cancers
- Ras sequence identified from this method contains point mutation, and is homologous to oncogenic Ras carried by transforming murine sarcoma viruses.
- The same cellular proto-oncogene could be affected by viruses, by chemical carcinogenesis, or by non-viral somatic mutations
 - Proto-oncogene vs. viral oncogene vs. cellular oncogene

37

the ras^D oncogene. Addition of DNA from a human bladder carcinoma to a culture of mouse 3T3 cells causes about one cell in a million to divide abnormally and form a focus, or clone of transformed cells. To clone the oncogene responsible for transformation, advantage is taken of the fact that most human genes have nearby repetitive DNA sequences called Alu sequences. DNA from the initial focus of transformed mouse cells is isolated, and the oncogene is separated from adventitious human DNA by secondary transfer to mouse cells. The total DNA from a secondary transfected mouse cell is then cloned into bacteriophage λ ; only the phage that receives human DNA hybridizes with an Alu probe. The hybridizing phage should contain part or all of the transforming oncogene. This expected result can be proved by showing either that the phage DNA can transform cells (if the oncogene has been completely cloned) or that the cloned piece of DNA is always present in cells transformed by DNA transfer from the original donor cell.

Mutation responsible for H-Ras oncogene activation

CCCGGG CCGCAGGCCC TTGAGGAGCG met thr glu tyr lys leu val val yal gly ala ATG ACG GAA TAT AAG CTG GTG GTG GTG GGG GGC GCC ile gln leu ile gln asn his phe val asp glu tyr asp pro thr ile glu ATC CAG CTG ATC CAG AAC CAT TTT GTG GAC GAA TAC GAC CCC ACT ATA GAG GTGAGCCTGC GCCGCCGTCC AGGTGCCAGC AGCTGCTGCG GGCGAGCCCA GGACACAGCC AGGATAGGGC TGGCTGCAGC CCCTGGTCCC CTGCATGGTG CTGTGGCCCT GTCTCCTGCT TCCTCTAGAG GAGGGGAGTC CCTCGTCTCA GCACCCCCAGG AGAGGAGGGG GCATGAGGGG CATGAGAGGT ACC

Tumor type	Proportion (%) of tumors carrying a point-mutated <i>ras</i> gene ^a
Pancreas	90 K
Thyroid (papillary)	60 (H, K, N)
Thyroid (follicular)	55 (H, K, N)
Colorectal	45 (K)
Seminoma	45 (K, N)
Myelodysplasia	40 (N, K)
Lung (non-small-cell)	35 (K)
Acute myelogenous leukemia	30 (N)
Liver	30 (N)
Melanoma	15 (K)
Bladder	10 (K)
Kidney	10 H

Table 4.2 A list of point-mutated *ras* oncogenes carried by a variety of human tumor cells

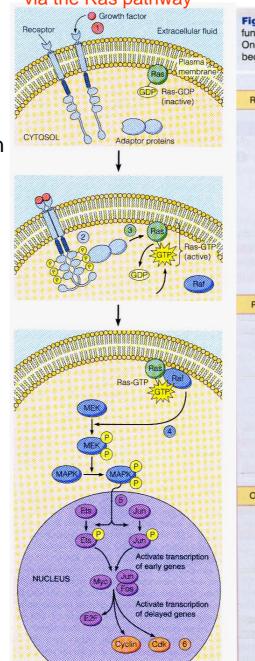
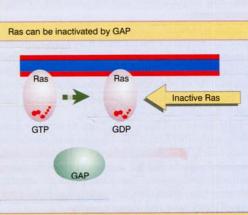
Constitutive activation of Ras oncogenes in cancer cells

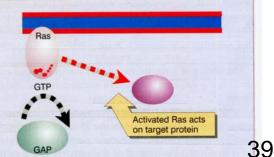
- The first human transforming oncogene
- Ras mutation are found in 20% of human cancers
- Position 12, 13 and 61 are most frequently mutated amino acid in Ras gene found in retroviruses and various types of human cancers

GEF: guanine nucleotide-exchange factor

GAP: GTPase-activating proteins

Growth factor signaling via the Ras pathway


Figure 28.10 Pathways that rely on Ras could function by controlling either GNRF or GAP. Oncogenic Ras mutants are refractory to control, because Ras remains in the active form. Ras can be activated by activating GNRF

GEF

Activated Ras acts on target protein

Oncogenic Ras remains constitutively in GTP-bound form

Oncogenes originally discovered in transforming retroviruses could be found in human tumor cell genomes

Table 4.1 Examples of retrovirus-associated oncogenes that have been discovered in altered form in human cancers

	Name of virus	Species	Oncogene	Type of oncoprotein	Homologous oncogene found in human tumors
*	Rous sarcoma	chicken	src	receptor TK	colon carcinoma ^a
	Abelson leukemia	mouse	abl	nonreceptor TK	CML
*	Avian erythroblastosis	mouse	erbB	receptor TK	gastric, lung, breast ^b
	McDonough feline sarcoma	cat	fms	receptor TK	AML ^c
	H-Z feline	cat	kit	receptor TK ^d	gastrointestinal stromal
	Murine sarcoma 3611	mouse	raf	Ser/Thr kinase ^e	bladder carcinoma
	Simian sarcoma	monkey	sis	growth factor (PDGF)	many types ^f
*	Harvey sarcoma	mouse/rat	H-ras ^g	small G protein	bladder carcinoma
	Kirsten sarcoma	mouse/rat	K- <i>ras</i> ⁹	small G protein	many types
	Avian erythroblastosis	chicken	erbA	nuclear receptor ^h	liver, kidney, pituitary
	Avian myeloblastosis E26	chicken	ets	transcription factor	leukemia ⁱ
*	Avian myelocytoma	chicken	myc ⁱ	transcription factor	many types
	Reticulo endotheliosis	turkey	<i>rel</i> ^k	transcription factor	lymphoma

^aMutant forms found in a small number of these tumors.

^bReceptor for EGF; the related erbB2/HER2/Neu protein is overexpressed in 30% of breast cancers.

^cFms, the receptor for colony-stimulating factor (CSF-1), is found in mutant form in a small number of AMLs; the related Flt3 (Fms-like tyrosine kinase-3) protein is frequently found in mutant form in these leukemias.

^dReceptor for stem cell factor.

^eThe closely related B-Raf protein is mutant in the majority of melanomas.

^fProtein is overexpressed in many types of tumors.

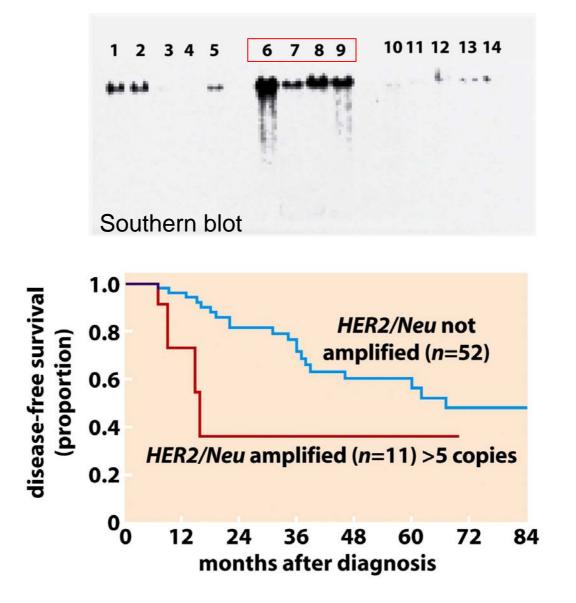
⁹The related N-ras gene is found in mutant form in a variety of human tumors.

^hReceptor for thyroid hormone.

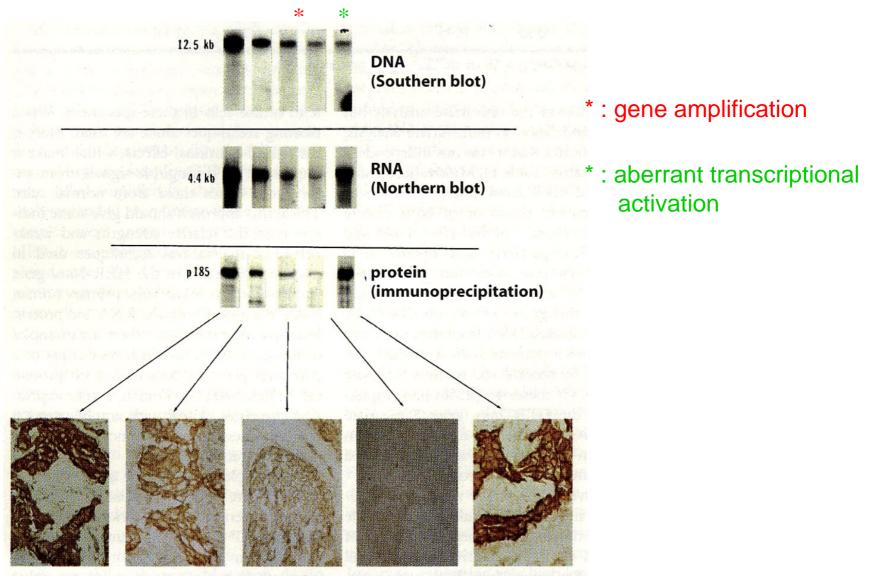
¹27 distinct members of the Ets family of transcription factors are encoded in the human genome. Ets-1 is overexpressed in many types of tumors; others are involved in chromosomal translocations in AML and in Ewing sarcomas.

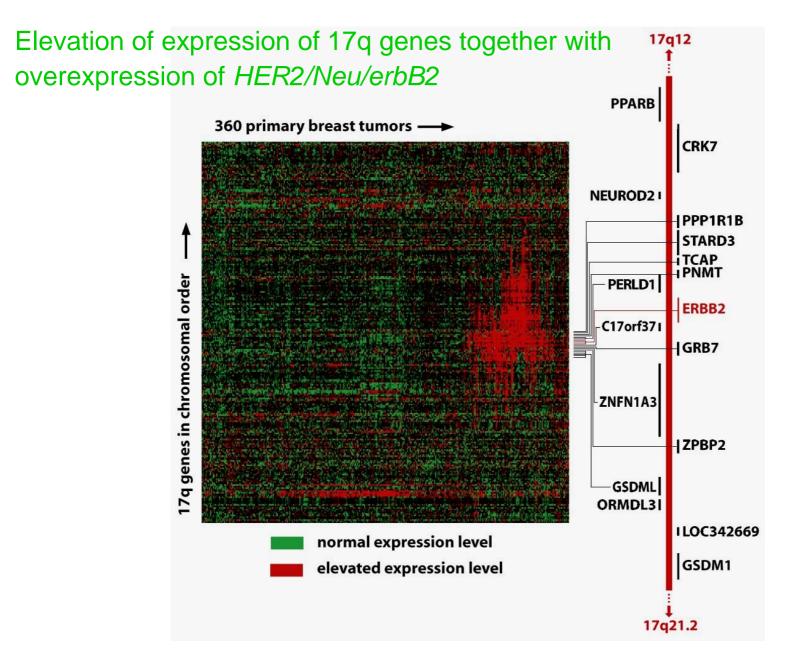
^jThe related N-myc gene is overexpressed in pediatric neuroblastomas and small-cell lung carcinomas.

^kRel is a member of a family of proteins that constitute the NF-κB transcription factor, which is constitutively activated in a wide range of human tumors.

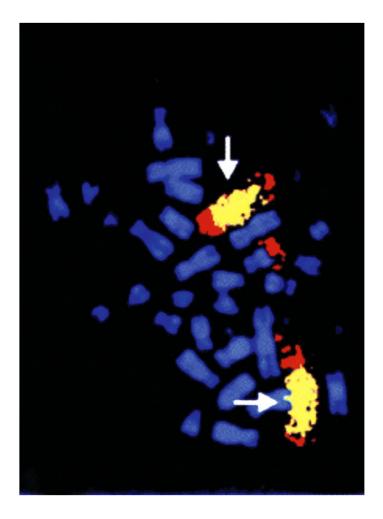

Adapted in part from J. Butel, *Carcinogenesis* 21:405–426, 2000; and G.M. Cooper, Oncogenes, 2nd ed. Boston and London: Jones and Bartlett, 1995.

Oncogenes (致癌基因)


- 1. Defined by their ability to transform cells in culture or induce cancer in animals
- 2. Gain-of-function mutations of proto-oncogenes (cellular counterpart of oncogenes)
- 3. Dominant effect: mutations in only one of the two alleles is sufficient for inducing oncogenesis
- 4. Originally identified from transforming retroviruses (viral oncogenes)
- 5. Identification of cellular oncogenes in human cancers by gene transfer assays
- 6. Proto-oncogenes can be activated by genetic changes affecting either protein expression or structure
- 7. Actions of oncogenes: uncontrolled growth-promoting signals
 - (a) production of hyperactive products (qualitative changes)
 - * example: constitutive Ras activity in cancer cells
 - (b) over-expression of protein products (quantitative change)
 - * example: overexpression of Myc
- 8. Mechanisms to activate proto-oncogenes
 - (a) retroviral transduction : v-src
 - (b) promoter/enhancer insertion (insertional mutagenesis): myc
 - (c) point mutation: *ras* oncogene
 - (d) amplification: *erbB*, *myc*
 - (e) chromosomal translocation: myc


Amplification of the erB2/neu oncogene in breast cancers

Amplification of the erB2/neu oncogene in breast cancers



immunohistochemistry

*Genes flanking HER2 were also over-expressed in a number of these tumors

N-myc amplification and childhood neuroblastomas

 Amplification of the N-*myc* gene occurs in about 40% of advanced pediatric neuroblastomas

HSRs: homogeneous staining regions

The increased gene copy numbers result in corresponding increase in the level of gene products

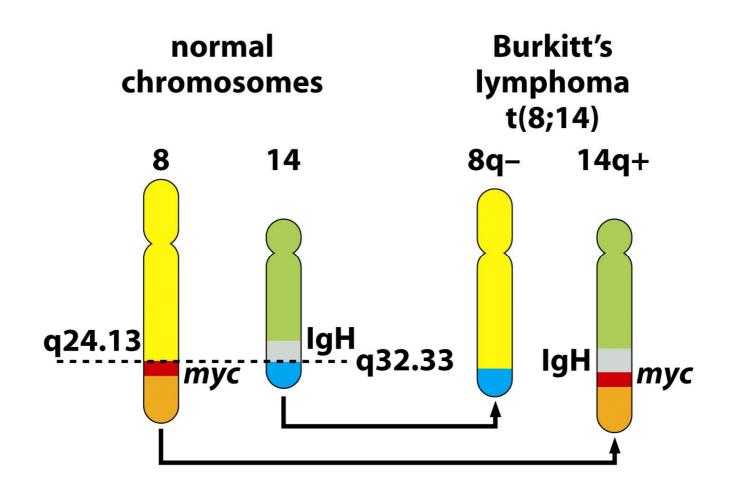
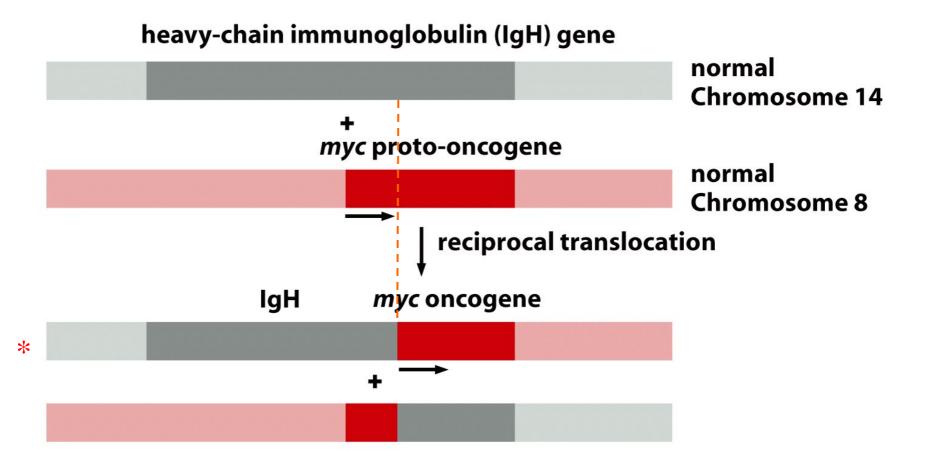

Name of oncogene ^a	Human chromosomal location	Human cancers	Nature of protein
erbB1	7q12–13	glioblastomas (50%); squamous cell carcinomas (10–20%)	RTK
cab1–erbB2–grb7	17q12	gastric, ovarian, breast carcinomas (10–25%)	RTK, adaptor protein
k-sam	7q26	gastric, breast carcinomas (10–20%)	RTK
FGF-R1	8p12	breast carcinomas (10%)	RTK
met	7q31	gastric carcinomas (20%)	RTK
K-ras	6p12	lung, ovarian, bladder carcinomas (5–10%)	small G protein
N-ras	1p13	head and neck cancers (30%)	TF
с-тус	8q24	various leukemias, carcinomas (10–50%)	TF
L-myc	1p32	lung carcinomas (10%)	TF
N-myc–DDX1	2p24–25	neuroblastomas, lung carcinomas (30%)	TF
akt-1	14q32–33	gastric cancers (20%)	ser/thr kinase
cyclin D1-exp1-hst1-ems1	(11q13)	breast and squamous cell carcinomas (40–50%)	G1 cyclin
cdk4–mdm2–sas–gli	12q13	sarcomas (40%)	CDK, p53 antagonist
cyclin E	19q12	gastric cancers (15%)	cyclin
akt2	(19q13)	pancreatic, ovarian cancers (30%)	ser/thr kinase
AIB1, BTAK	(20q12–13)	breast cancers (15%)	receptor co-activator
cdk6	(19q21–22)	gliomas (5%)	CDK
myb	6q23-24	colon carcinoma, leukemias	TF
ets-1	11q23	lymphoma	TF
gli	12q13	glioblastomas	TF
FGFR2	10q26	breast carcinomas	RTK

Table 4.3 Some frequently amplified chromosomal regions and the genes they are known to carry

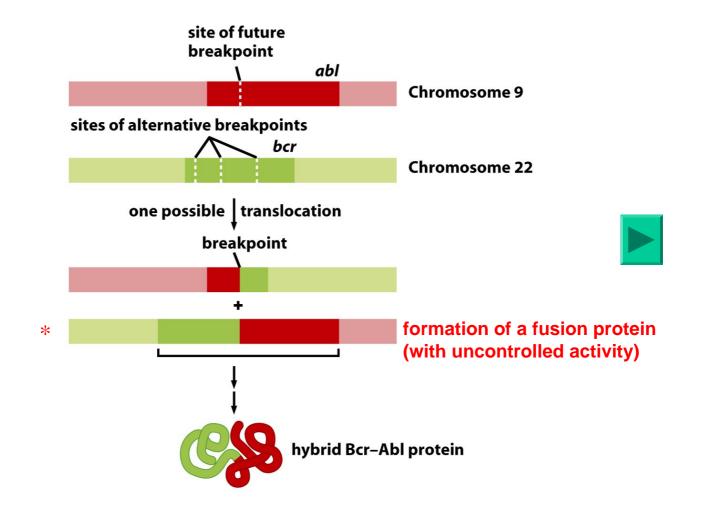

^aThe listing of several genes indicates the frequent co-amplification of a number of closely linked genes; only the products of the most frequently amplified genes are described in the right column.

Courtesy of M. Terada, Tokyo, and adapted from G.M. Cooper, Oncogenes, 2nd ed. Boston and London: Jones and Bartlett, 1995.

Chromosomal translocations in Burkitt's lymphomas

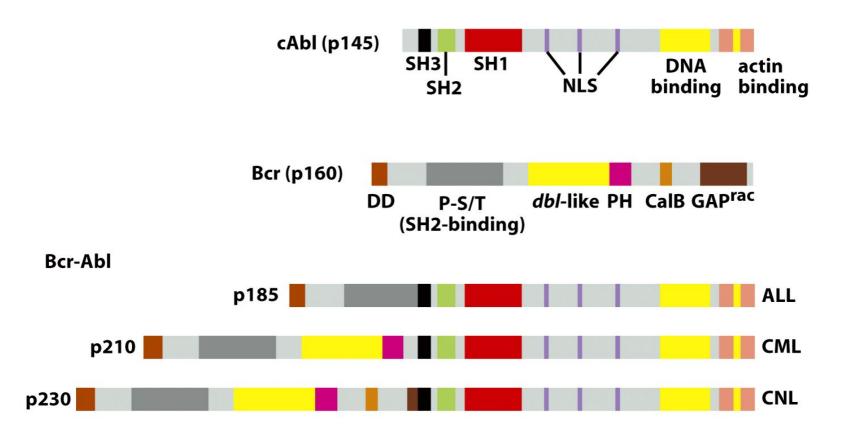
Chromosomal translocation in Burkitt's lymphomas

This translocation places *c-myc* gene under the control of IgH promoter/enhancer, and leads to overexpression of *myc* gene


Table 4.4 Translocations in human tumors that deregulate proto-oncogeneexpression and thereby create oncogenes

*

Oncogene	Neoplasm
тус	Burkitt's lymphoma; other B- and T-cell malignancies
bcl-2	follicular B-cell lymphomas
bcl-3	chronic B-cell lymphomas
bcl-6	diffuse B-cell lymphomas
hox1	acute T-cell leukemia
lyl	acute T-cell leukemia
rhom-1	acute T-cell leukemia
rhom-2	acute T-cell leukemia
tal-1	acute T-cell leukemia
tal-2	acute T-cell leukemia
tan-1	acute T-cell leukemia


Adapted from G.M. Cooper, Oncogenes, 2nd ed. Boston and London: Jones and Bartlett, 1995.

Formation of the bcr-abl oncogene by chromosomal translocation

Structural changes in proto-oncogenes can also lead to oncogenic activation

Formation of the *bcr-abl* oncogene by chromosomal translocations were found in different types of human leukemia

Different breakpoints in *bcr* are observed in the chromosomal translocations encountered in different types of human leukemia

Table 4.5 Translocations in human tumors that cause the formation of oncogenicfusion proteins of novel structure and function

Oncogene	Neoplasm
bcr/abl	chronic myelogenous leukemia; acute lymphocytic leukemia
dek/can	acute myeloid leukemia
E2A/pbx1	acute pre-B-cell leukemia
PML/RAR	acute promyelocytic leukemia
?/erg	myeloid leukemia
irel/urg	B-cell lymphoma
CBFβ/MYH11	acute myeloid leukemia
aml1/mtg8	acute myeloid leukemia
ews/fli	Ewing sarcoma
lyt-10/Ca1	B-cell lymphoma
hrx/enl	acute leukemias
hrx/af4	acute leukemias
NPM/ALK	large-cell lymphomas

Adapted from G.M. Cooper, Oncogenes, 2nd ed. Boston and London: Jones and Bartlett, 1995.

Almost all of these have been found in leukemias and lymphomas

Proto-oncogenes can be activated by genetic changes affecting protein expression

c-*myc* proto-oncogene can be activated by retroviral transduction, provirus insertion, gene amplification, and chromosomal translocation. All of these mechanisms lead to overexpression of *myc* gene.


Structural changes in proto-oncogenes can also lead to oncogenic activation

c-*ras* proto-oncogene can be activated by retroviral insertion and somatic mutations. Both mechanisms result in oncogenic *ras* with point mutations

Both activation mechanisms (regulatory and structural alterations) might collaborate to create an active oncogene

H-ras carries by Harvey sarcoma virus contains a point mutation and is over-expressed

Deregulated signaling of growth factor receptors

Structural changes in proto-oncogenes can also lead to oncogenic activation